
OPEN DATA
FOR THE PEOPLE
Dr. Greg von Nessi
Link Digital, Lead Data Scientist

LINKDIGITAL OPEN DATA FOR THE PEOPLE 2

WHAT DO PEOPLE WANT FROM DATA?

It may be obvious but people are not businesses. With
all the buzz and talk surrounding ‘Big Data’ making
just about everything better, it’s easy to forget that
‘Big Data’ is really a collection of concepts that benefit
businesses much more than the individual; and that’s
not necessarily a bad thing. Yes, the person in front of
a screen may get some more relevant search results
or advertising pop-ups, but ultimately, it’s the market
edge a company gets when using ‘Big Data’ that has
led to its boom. Again, not a bad thing.

“...for most people, data translates into
getting something done or learning

something.”

But what about the people? While everyone uses data
all the time to make decisions, learn, formulate views,
etc., no single individual has the ability to statistically
process the amount of data that a company like
Google or Amazon does on a continuous basis. If
you’re looking to buy a home and want to figure out
what the fire risk to the property is, chances are you
are not going to be too happy if your real estate agent
just plops a bunch of actuarial tables in front of you.
However, if you are an insurance company, those
tables are exactly what you want for determining fire
risk. People need something to pre-process the raw
data before they can make sense of it.

So, if people need an intermediary to make sense of
raw data, what are they? We categorise intermediaries
as either being an application or piece of data
journalism. Here are some examples:

Applications:

•	 Search Engine Interfaces
•	 Trip Planners
•	 Online Maps

Data Journalism:

•	 Sustainable Energy Without the Hot Air
(excellent book by D. J. C. MacKay)

•	 XKCD (funny webcomic with some fantastic
data visualisations)

•	 Political polls/trends

Obviously, the line between data journalism and
applications can be pretty blurry; but we generally
classify an application as something that empowers
an individual to accomplish some task, where a piece
of data journalism facilitates some form of learning
or development of a personal view or opinion. So, for
most people, data translates into getting something
done or learning something. Of course, ‘getting
something done’ or ‘learning something’ may be just a
part of a larger, individual goal; but we think those two
broad motivations are particularly effective in distilling
what people overwhelmingly want to get out of data.

DECISIONS, DECISIONS
Most people have no problem articulating what their preferred news sources, writers, phone/computer apps, etc. are.
While humans are not so crash hot on processing raw data, we seem quite comfortable making judgment calls on
entities that process the data for us. Do you prefer to watch CNN, Fox News, BBC or Al Jazeera? Each one of those
news outlets, by and large, has access to the same news sources; but they all present the data from those sources
in very different ways to their viewership. Despite this, humans have no problem picking one or more as being their
preferred. In some very real sense, this sort of decision making is something we have evolved to being good at.
However, with the advent of the internet, the target of this data filtration is no longer restricted to faceless markets/
demographics; it can be tailored right down to the individual. For instance, modern internet search engines will
normally try to factor in a user’s previous search history when processing a list of search results. So, while one person
searching for the term ‘fusion’ may get a list of links about nuclear physics, another may get a list of cooking sites.
As social creatures, reliant upon communities to survive, we have always had to make decisions on who can do what
the best (i.e. no one person is the best at everything). This ability to make judgments of authority and delegation is
something our brains excel at by design.

LINKDIGITAL OPEN DATA FOR THE PEOPLE 3

SOFTWARE
ENGINEERING INTERMEDIARIES SOCIAL

ENGINEERING

DATA

DATA

DATA

DATA JOURNALISM:
POLITICAL POLLS/
TRENDS

APPLICATIONS:
TRIP PLANNERS

DATA JOURNALISM:
XKCD

APPLICATIONS:
SEARCH ENGINE
INTERFACES

APPLICATIONS:
ONLINE MAPS

MARIA

SARAH

FRANK

JOSE

NOT JUST A SOFTWARE ENGINEERING
PROBLEM

OPEN DATA PORTALS (ODPs) AS A FOUNDATION OF TRUST

Coming back to applications and data journalism, a picture starts to emerge.

SOFTWARE
ENGINEERING

INTERMEDIARIES SOCIAL
ENGINEERING

So, to bring data to the people there needs to be a facilitator between data and the applications/journalists that
need to use it. With that facilitator in place, apps will be created, data journalism pieces written and the people will
then be able to start using those pieces of work. However, for this data chain to be effective and efficient, certain
key requirements need to be fulfilled: data needs to be accurate and easily discoverable, while the data processing
entities need to be known and trusted. Trust is the only one these requirements that has a dependency on the others.
To put it another way, a trusted processor of information has to be known to individuals, while being able to access as
much accurate data, relevant to its context, as possible. Obviously, these are not the only necessary requirements that
empower trust, as it is still possible to misuse good data. In this context one can look at application and journalism
entities, as transforming the individual’s task from processing data to that of making a judgment call based on how
much they trust the processor.

LINKDIGITAL OPEN DATA FOR THE PEOPLE 4

WHY OPEN SOURCE?

The image on the previous page defines two
engineering domains, which have some level of overlap
where they both meet at the App/Journalism layer
of the graph. As one moves from the datastore to
the user, the blend of engineering tasks gradually
shifts from software to social. At the data layer, it
is obvious there are a lot of technical tasks that
need to be addressed with hardware and software
implementations. Similarly, at the user layer, there
are obvious social tasks that need to be engaged
that surround advertising, awareness, community
building, etc. In this view, open software solutions start
making a lot of sense, as a successful open source
data portal will be one that not only produces a strong
software solution but one that also fosters a strong
developer and user community around that software.
Moreover, if we are considering a data chain that is
sensitive to individual and not just a market context,
an open source solution helps protect the interest
of minority users within a processing application’s
target. In particular, an open source project can
develop a diverse set of features, which may not
otherwise fall in line with a proprietary solution’s need
to maximise the profits of its software. With a strong
open-source community, the pathways for extending
awareness, generating effective advertising, etc. for
data processing applications becomes a lot clearer
and are more easily distributed than in the case of
using a piece of proprietary software with developers
being very isolated from users. Thus, the gradual shift
from software to social engineering can be deeply
merged into an open-source development workflow.
An excellent reflection of this point is how open
source projects provide a cornerstone to many civic
hacktivism efforts, which include public hackathons.
The explosion in open source project awareness and
proliferation has subsequently led to a boom in these
groups and efforts. Indeed, by using existing open
source codes, developers involved with civic hacktivism
do not have to re-invent the wheel every time they

engage in a project and are thus able to create
genuinely useful pieces of software in a very short
amount of time. While civic hacktivism is a growing
social trend, it requires heavy lifting in both the social
and software engineering domains whose continued
growth will be greatly aided by the expansion of open
data publishers and greater engagement/appreciation
from end users.

Beyond the above arguments, having an effective
integration with a distributed, open-source community
helps manage the risk associated with getting locked
into proprietary solutions or a single vendor. It also
becomes a lot clearer about what features are well-
supported/established and which are not; again, this
can facilitate better risk management on the part
of the ODP in terms of determining which features/
extensions get deployed. In general, the open source
model is naturally resistant to information/business
silos being constructed within the project, which are
generators of risk.

Some potential issues with open source are that it
can take a long time for the software to get features
to a mature, well-supported state. Thus, there may be
situations where an ODP needs to implement a feature
on timescales faster than which the community is
moving. This can lead to frustration and some poorly
thought out implementations. However, this risk can
and should be mitigated by strongly feeding back into
the core open source implementation via pull requests,
posting issues and core developer involvement. This
feedback ensures that features get implemented
correctly in the codebase, or at the very least alert
the core developers to potential needs for architecture
restructuring. Again, the development of an ODP is
both a software and social challenge; thus, a good ODP
will always have a strong feedback into its core open
source community.

“With a strong open-source community, the pathways for extending awareness, generating
effective advertising, etc. for data processing applications becomes a lot clearer and are more

easily distributed than in the case of using a piece of proprietary software with developers
being very isolated from users.”

LINKDIGITAL OPEN DATA FOR THE PEOPLE 5

MACHINES ARE USERS TOO

Stepping back into a higher level view of ODPs, it is clear that a good ODP is needed to empower the apps and
journalistic works that ultimately bring data to the people. However, this also implies that the primary users of ODPs
are machines, not people. This perhaps unintuitive conclusion is of key importance when it comes to the technical
design of an ODP, as high-value features for machines are generally quite different from those that are of high value
to individual users. Of course, ODPs need to be usable by people as well as machines, as humans are still required
to make many of the decisions surrounding data curatorship; and if nothing else, individuals should always have the
ability to investigate data directly for themselves. However, the vast majority of ODP usage will be via machines and
not via a direct human interface.

Ultimately, this combined with the above leads us to the following set of desired characteristics for an ODP:

•	 the ODP be open source
•	 built primarily for app/journalistic intermediaries that, in turn, help people with tasks or learning
•	 empower intermediaries to deliver data to individuals that best fit their personal context
•	 empower intermediaries to build trust with their users by ensuring provided data is easily discoverable and

reliably accessible

NITTY-GRITTY TECHNICALS OF AN OPEN
DATA PORTAL

WHAT EVERYONE EXPECTS OF AN OPEN DATA PORTAL

We have so far painted a picture of how the ODP fits into the wider chain that supplies data to people and that an
effective ODP has to be one that empowers intermediaries in their efforts to garner trust amongst potential users.
Now, we zoom in on some of the technical requirements an ODP needs to satisfy to be an effective part of this data
delivery chain.

Before moving into specifics, we make some assumptions about features an ODP is to provide; a standard base level
of expected functionality:

•	 maintains a catalog of metadata
•	 both custodian users and machines are able to manage the metadata catalog
•	 options for custodian users and machines to upload datasets to at least one persistent, highly available

datastore
•	 reliable data downloading from the ODP’s datastore(s)
•	 options for custodians to link in external data
•	 ability to extend the ODP’s core functionality without breaking the core software upgrade path
•	 open sourced (see the previous section)

While most people will agree that at least some of the above points should be core features of any software powering
an ODP, there are still some technical points that are not so clear cut.

LINKDIGITAL OPEN DATA FOR THE PEOPLE 6

DATA AND HISTORICAL PATH ENTROPY

The one big difference between code and data, is that
code is almost always manipulated via the auspices of
a programmer typing into a console, i.e. transforming
the uncompiled code. Data, on the other hand, can
be transformed by any sort of of which there are a
countless number. So, instead of associating a user
with a particular code change, an entity and a unique
identifier of the transformation operation itself should
be associated with the data manipulation record.

Any imperfections (or outright absence) of such an
authoritative dataset log, effectively leads to a higher
historical path entropy, which means the uncertainty
of how the data arrived in its current state increases.
At the risk of stating the obvious, this is extremely
important for both businesses and journalists using
the data; such historical uncertainties can hide hidden
biases and data processing errors that could easily
have a business or journalistic impact on its use.

A concept that motivates much of what we think
an ODP should and should not provide, surrounds a
concept we call ‘Historical Path Entropy’. The quotes
are probably unnecessary, as we believe the term to
be pretty accurate from an information theory point of
view.

One can view any dataset as the endpoint of a timeline
encompassing a sequence of create, read, update
and delete (CRUD) events that a dataset has gone
through to arrive at its current state. The historical
path entropy of a dataset corresponds to the number
of possible timelines that could have led to the
current state of the dataset. Historical path entropy is
minimised if a historical log of its timeline is available
(i.e. there is only one path) and increases whenever
data is duplicated (i.e. a snapshot branch off another
timeline) or transformed without being noted in its
historical log.

A concrete example of just how important this is can
be found in software engineering, which has been
hugely influenced by tools like CVS, SVN and GIT to
basically manage a historical log of code development.
These tools enable developers to know exactly how
a piece of code got to its current state and has
facilitated a revolution in how code is developed and
documented. We’re basically saying data should be
created and maintained in almost an identical fashion.

The one big difference between code and data, is that code is almost always
manipulated via the auspices of a programmer typing into a console, i.e. transforming

the uncompiled code. Data, on the other hand, can be transformed by any sort of
codified mathematical operation, which there is a countless amount of.

LINKDIGITAL OPEN DATA FOR THE PEOPLE 7

APIS AND POST-PROCESSING

In general, an ODP will constantly grow in terms of the number of datasets it provides. Moreover, it will often be the
case that these datasets will have some wide degree of variance in terms of size and complexity. This leads to an
intrinsic problem with ODPs providing API endpoints or any post processing facility for its datasets, as it becomes
impractical to give any concrete service level agreements (SLAs) for the functionality of those endpoints.

Most data-oriented business models will be built around SLAs of the services they provide. Obviously, if a business
decides to leverage an ODP’s API endpoint for their product, the associated SLAs cannot be better than the SLAs
of the ODP API endpoint. So, we come to a problem with ODP APIs being unable to provide assurances for API
functionality.

Of course, an ODP with sufficient funding and staff could provide SLAs for its datasets; but this still would imply
either 1) The cost of running the site scales with its size, 2) The data provided by the ODP is constrained to a size
manageable by the current resources. The first option is almost always unacceptable for obvious reasons; unbounded
budgets don’t exist. The second option will force many ODPs to go against some core Open Data philosophies: it may
require deletion of datasets or holding data away from public view. Neither option is a good one.

Compounding this is the fact that controlling un-throttled APIs can lead to larger businesses placing a high, persistent
load on the system or even white DDoSing the site.

In short, ODPs shouldn’t be advertising API endpoints under their control for business-critical applications. There just
is no way to minimize business risk over a long term interval when providing this sort of endpoint.

Instead, businesses should be periodically updating via download in a batch process from the ODP, subsequently using
their local copy to power their application. This protects the business from being directly reliant on real-time data
availability from the ODP. It also provides a buffer in case the dataset changes in a way that breaks functionality in
their application.

Of course, it is perfectly fine for an ODP to provide references for external API endpoints, which will presumably have
their own SLAs, user agreements, etc., as the risk associated with managing that endpoint will not fall directly on the
shoulders of the ODP.

Data post-processing is something closely linked with APIs, as one common function of Data APIs is to furnish some
sort of SQL-like querying interface, which can easily communicate data processing instructions. Realtime post-
processing of the data faces all the issues listed above with APIs and then some. In particular, post-processing data
leads to higher historical path entropy. Even in the process of converting one data format to another, errors can creep
in, numerical precision lost or falsely extended, etc. Again, we believe that all such conversions need to be included in
the historical log of the dataset.

If an ODP finds the necessity to post process data, then it should be run as an asynchronous batch process, with
appropriate additions being made to the datasets historical log in its metadata. A good way to handle this would be
through the auspices of a micro-service. A micro-service here would constitute a running piece of software which
would be sandboxed away from the primary ODP software (e.g. running on its own virtualised instance). Micro services
would be managed uniquely from the core ODP, having a uniquely defined deployment domain over datasets, SLA,
hardware requirements and associated business contracts. With any micro-service, there should be some general
implementation in place to ensure dataset logs are appropriately updated for any datasets manipulated by the micro-
service.

LINKDIGITAL OPEN DATA FOR THE PEOPLE 8

A pattern that has emerged in ODPs is the use
of data-harvesting from other portals (pushing or
pulling). Harvesting from other portals causes several
technical issues and is, in general, too difficult to
make robust enough for enterprise-level applications.
Problems with harvesters typically have to do with
the following: endpoint having a different metadata
schema, endpoint changing unexpectedly, endpoint
becoming un-responsive, batch-pull harvesting
taking an excessively long time for large harvests,
data duplication, data deletions handled incorrectly,
and harvester not running fully to completion.
Compounding these technical issues is the fact that
most harvester implementations increase the dataset
historical entropy, if not obfuscating what the real
source of truth for the dataset is completely.

Another issue we’ve seen is when most the data
held by an ODP is harvested data. The situation is
obviously not a good one, as most the ODP’s datastore
is dedicated to duplicate data for which the ODP is
not the source of truth for. This can be taken to an
extreme where the clear majority of an ODP’s system
resources are dedicated to handling data for which it is
not the source of truth.

HARVESTING AND SEARCH FEDERATION

At the end of the day, we have never seen a
compelling use case for harvesting data in an ODP
context. Unfortunately, funding for many ODP’s
is based on the number of datasets they host, so
harvesting is used to inflate those numbers.

A much more sensible alternative to harvesting is
building search federations: augmenting local dataset
search results with those of partnered datasources/
portals. This basically presents search results as
comprising of both local datasets and non-local
datasets whose entries directly link to an external
data portal. In practice, we have found this to be much
easier to support and maintain. Moreover, the non-local
search results can be generated in real-time, which
ensures non-local results are always up to date; and
since data isn’t being duplicated, the process is adding
to the historical path entropy of the dataset.

LINKDIGITAL OPEN DATA FOR THE PEOPLE 9

WHAT SHOULD AN ODP PROVIDE?

So, after all this, we have a slightly extended wishlist of features for an ODP:

Data Journalism:

•	 Spec for site meta-data schema
•	 Data quality criterion and ratings
•	 Meta-data search capabilities

•	 Federated with partnered ODPs
•	 Historical log with links to previous

transformations
•	 Reliable dataset downloads
•	 Throttled API endpoint

Applications:

•	 Spec for site meta-data schema
•	 Data quality criterion and ratings
•	 Meta-data search capabilities

•	 Federated with partnered ODPs
•	 Historical log with links to previous

transformations
•	 Reliable dataset download

Overall, we think an ODP should facilitate the finding of data, creation and maintenance of a historical data log
and provide a robust facility for acquiring data for which it is the source of truth.

With available cloud services, it is easy to provide an enterprise-level download endpoint for datasets, even with
the nature of ODPs expected to monotonically increase the number of its datasets.

Data quality measurements are a good metric to present to the user, as it provides context for how well the
data is relatively curated in an ODP with possibly many data-publishers, which is a unique and useful facility
for an aggregating ODP to provide to its users. Even though data quality criterion can be somewhat subjective,
statistically such an assessment will become more useful and refined as the ODP grows. This is one case where
the ODP’s nature to constantly grow works in its favor. Indeed, in an ODP with many datasets, such quality
ratings become invaluable as a judgment of a dataset’s quality relative to the set of other datasets under that
same rating scheme.

Probably the most import facility furnished by the ODP is the ability to efficiently search through metadata.
Indeed, one can argue the whole point of ODPs is to facilitate data discovery. To us, metadata searching should
enable one to search via contextual and geospatial criteria. It also should enable one to explore the historical
log of datasets, providing external links to parent datasets and/or processing codes whenever possible. It should
also provide the ability to find child datasets (in its search federation) of a given dataset.

TL;DR
While an ODP can be easily understood as being key in bringing data to the public, it has to be much more than
a website with a bunch of spreadsheet download links. People are generally bad at processing large quantities of
numerical data, but they are really good at figuring out which applications and news sources they trust to do this
processing for them. Hence an ODP needs to be designed to empower applications and journalists to produce
trustworthy distillations of that data.

