
How to install
CKAN using
Docker
Containers
 linkdigital.com.au

http://linkdigital.com.au/

Introduction
It seems that more and more these days CKAN
running as containers is the preferred method for
Production and Development CKAN environments.
Having one container per service is the architecture
that seems to cover most application needs. Its
simplicity and ability to take advantage of quickly
upgrading to new CKAN releases, however small, is
a huge drawcard.

In addition to its convenience and flexibility,
deploying CKAN as Docker containers offers
numerous benefits for both production and
development environments.

With each service encapsulated within its own
container, the architecture ensures better isolation,
potential scalability, and easier management of
dependencies. Furthermore, Docker's inherent
portability facilitates smooth deployment across
various environments, enabling developers to
replicate configurations effortlessly and streamline
the deployment process. This approach not only
simplifies the deployment of CKAN instances but
also enhances the overall agility and robustness of
the ecosystem, empowering organisations to adapt
swiftly to evolving requirements and leverage the
latest CKAN features with minimal effort.

linkdigital.com.au

http://linkdigital.com.au/
http://linkdigital.com.au/
http://linkdigital.com.au/

Database
pull

pull

pull

execute

execute

execute

push

CKAN as Docker
Compose Services
The CKAN software stack is currently made up of 6
Docker Compose Services

In the diagram, the Docker Host can be of any computer architecture. I personally
use Mac OS for day-to-day work and Ubuntu 22.04 virtual machines for testing.

In theory, as a developer, you could implement local
modifications to a deployable CKAN image when your
development environment's architecture differs from
that of the testing and production environments

These services each run in their own Docker
container and thus can be upgraded or changed
in some way separately from one another.

DataPusher

D
oc

ke
r

cl
ie

nt
s

Docker containers

 UI

DataPusher

Docker host

Docker images

docker run

docker run

docker run

Docker
Daemon

linkdigital.com.au

http://linkdigital.com.au/
http://linkdigital.com.au/
http://linkdigital.com.au/

Installation
Assuming you already have the Docker Engine
software installed on your host machine. If not,
you can use the information in this guide: to get
it installed.

https://docs.docker.com/engine/install/

The first thing that needs to be done is
downloading the CKAN Docker repository (ckan-
docker) git clone

https://github.com/ckan/ckan-docker

This will create a ckan-docker directory. Within this
directory you will need to do the following:

(create an environment file)
The .env file is where specific changes can be made
to environment variables e.g. a database
connection string

cp.env.example.env

For each service defined in the Compose file
(docker-compose.yml) this command will build
the local image if the service definition includes
the “build” command. Some services will just run
a container directly from a remote image i.e.: an
image from a docker repository (eg: DockerHub)

docker compose build

linkdigital.com.au

https://docs.docker.com/engine/install/
https://github.com/ckan/ckan-docker
http://linkdigital.com.au/
http://linkdigital.com.au/
http://linkdigital.com.au/

Docker builds the Docker image in layers, based
on the instructions in the Dockerfile. Each
instruction in the Dockerfile (e.g., RUN, COPY,
ADD) creates a new layer in the image. Docker
caches intermediate layers to improve build
performance, so if a Dockerfile hasn't changed
since the last build, Docker can reuse previously
built layers, saving time and resources.

Once the build process completes successfully,
Docker assigns a tag to the newly created image
based on the service name and any specified tags in
the Compose file.

This command will run containers off those
images. Each service will then have an
associated container running. The services can
also have relationships between each other.
These links will be established during this
command too. The Compose file (docker-
compose.yml) file also defines the networks,
container dependencies, healthchecks and the
volumes used for CKAN and the other
containers.

docker compose up

Docker executes each instruction in the Dockerfile
sequentially, performing tasks such as installing
dependencies, copying files into the image, setting
environment variables, and configuring the
container environment.

linkdigital.com.au

http://linkdigital.com.au/
http://linkdigital.com.au/
http://linkdigital.com.au/

While the services are starting, Docker Compose
streams the output (logs) of each service to the
terminal. You can see the logs of individual
services and monitor their initialization process.
Once all services have been successfully started,
Docker Compose keeps them running in the
background, allowing them to serve requests or
perform their designated tasks. If any service
encounters an error during startup, an error
message is displayed, and stop is made to the
affected service.

This installation can take a while (5-10 minutes) if
none of the local images exist before starting.
Subsequent re-builds or stopping/starting
containers can take advantage of the caching in
Docker installs, and the time to get the whole CKAN
system running can be dramatically reduced.

The end result is 6 containers running:

linkdigital.com.au

http://linkdigital.com.au/
http://linkdigital.com.au/
http://linkdigital.com.au/

Base mode

Development Mode
There are 2 types of environments or modes –

There are separate Docker Compose and Dockerfiles
for Development mode. For instance, you would run
the following command to build a Development
environment:

If you are a developer, you may want to install
CKAN in Development mode. This mode makes it
easier to get started for the development of new
CKAN extensions and to make updates to CKAN
core code. It uses the base mode CKAN image as
the foundation and adds additional layers that a
typical developer would require i.e.: instals
development dependency libraries, creates a
CKAN extension location (directory) on the
filesystem.

Development mode

f docker-compose.dev.yml build

docker compose

And the following command to start the
containers:

f docker-compose.dev.yml up

linkdigital.com.au

http://linkdigital.com.au/
http://linkdigital.com.au/
http://linkdigital.com.au/

Customising (extending)
your local image
To perform extra initialization steps, you can add
scripts to customise your local images and
subsequent containers. Copy these scripts to the
/docker-entrypoint.d folder (The folder should
be created for you when you build the image).
Any *.sh and *.py file in that folder will be
executed just after the main initialization script
(prerun.py) is executed and just before the web
server and supervisor processes are started. The
sequence in which the scripts execute follows a
lexical order.

The foundational Docker Compose configuration
employs a NGINX image (container) as the front-end,
serving as a reverse proxy.

HTTPS functionality operates on port 8443 within
this setup. This of course can be changed to suit
business requirements.

linkdigital.com.au

http://linkdigital.com.au/
http://linkdigital.com.au/
http://linkdigital.com.au/

Relationship between the
ckan-docker and ckan-
docker-base GitHub
repositories
The relationship between the ckan-docker GitHub
repository and the ckan-docker-base repository is that the
latter serves as the foundation for the former. Essentially,
ckan-docker-base contains the essential configurations,
dependencies, and infrastructure required to build base
Docker images for CKAN. These base images provide a
standardised starting point for deploying CKAN instances
within Docker containers.

It is imperative to underscore that such a
configuration is unsuitable for production
environments.
The Development mode configuration does
not contain an NGINX service. The entrypoint
into CKAN is the actual CKAN container itself.

As part of the ENTRYPOINT process, a
self-signed SSL certificate is generated.
Both the NGINX server_name directive
and the Common Name (CN) field in the
SSL certificate have been uniformly set to
‘localhost‘.

linkdigital.com.au

http://linkdigital.com.au/
http://linkdigital.com.au/
http://linkdigital.com.au/

The ckan-docker repository then builds upon
this base by incorporating additional
configurations, customizations, and services
tailored for specific CKAN deployment
scenarios. In summary, ckan-docker-base
establishes the fundamental building blocks,
while ckan-docker extends and customises
these to create fully functional CKAN Docker
environments.
You can override the main configuration files
(Dockerfile, prerun.py and start_ckan.sh)
from ckan-docker-base within the downloaded
i.e. cloned ckan-docker directory structure.
There is no need to create your own (local)
modified ckan-docker-base base image.

Related video: CKAN 2.10
install with Docker on
Ubuntu 22.04

This video shows you how to install CKAN 2.10 from
package. This is the quickest and easiest way to install
CKAN, but it requires Ubuntu 20.04 or 22.04 64-bit.

CKAN 2.10 Install from package

If you’re not using any of these Ubuntu versions, or if
you’re installing CKAN for development, you should
watch

CKAN 2.10 Install from
source

linkdigital.com.au

https://www.youtube.com/watch?v=nLGOiU3xVys&list=PLNYR4MdBNnu9hGFdRNGZCX-OnU8Ug0dUx&index=9
https://www.youtube.com/watch?v=nLGOiU3xVys&list=PLNYR4MdBNnu9hGFdRNGZCX-OnU8Ug0dUx&index=9
https://www.youtube.com/watch?v=_JmwlDmST58&list=PLNYR4MdBNnu9hGFdRNGZCX-OnU8Ug0dUx&index=9&t=736s&pp=gAQBiAQB
https://www.youtube.com/watch?v=_JmwlDmST58&list=PLNYR4MdBNnu9hGFdRNGZCX-OnU8Ug0dUx&index=9&t=736s&pp=gAQBiAQB
http://linkdigital.com.au/
http://linkdigital.com.au/
http://linkdigital.com.au/

Facts about CKAN and Link Digital

CKAN was launched in 2006 Link Digital has extensive experience in using
CKAN in the development of:

Link Digital is one of the largest contributing
developers to the CKAN community.

CKAN can be developed to function as an
open data platform or internal data
repository once it is deployed and hosted on
a web server.

linkdigital.com.au

http://linkdigital.com.au/
http://linkdigital.com.au/
http://linkdigital.com.au/

About the
contributor

Brett Jones
Developer Experience
CKAN Tech Team

With a 30-year tenure in the tech industry, Brett Jones brings a wealth of
experience across the globe. His career has traversed six international
cities: Wellington, Sydney, Melbourne, New York, San Francisco, and Berlin,
with an additional stop in Dhahran, Saudi Arabia. Throughout his journey,
he has done various hats at three tech giants – BEA Systems, Sun
Microsystems, and Hewlett Packard. His expertise spans across diverse
roles, including developer, solution architect/design, systems
engineering, DevOps, and integration.

Highlights of Brett’s impressive career include working on the trading floor
at 60 Wall Street during the dot-com boom, experiencing the heart of Silicon
Valley, and dedicating the last five years to the New Payments Platform
(NPP) project in Sydney. His recent focus areas have been build automation,
bespoke tool creation, application performance monitoring, and data
engineering and analysis.

linkdigital.com.au

http://linkdigital.com.au/
http://linkdigital.com.au/
http://linkdigital.com.au/

linkdigital.com.au

http://linkdigital.com.au/
http://linkdigital.com.au/

